Impact of Modeling Simplifications on Lightning Strike Simulation for Aeroengine

Author:

Qian Yi-fan1ORCID,Ye Zhi-feng1ORCID,Zhang Hai-bo1ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

With the development of electromagnetic simulation software and affordable hardware, it is allowed for us to complete simulations for EMC purposes. However, simulation demands will be immense when simulations for models with complex structures, especially aircraft components, have to be solved. Hence, it is meaningful to investigate how to minimize the computational demands. One of the solutions to reduce the simulation expense is the simplification for the simulated model. But the simplified model should be guaranteed to provide credible simulation results which do not deviate from the original model apparently. Generally, the difference between the simulation results and experimental data is estimated, or if the experimental conditions are not achieved, the comparison between the simplified model and the original one has to be analyzed, at least. This paper explores the electromagnetic simulation of a turbofan engine encountering lightning strike. With the simplifications of different components on the turbofan engine, the influences on induced currents of engine controller cables are simulated and analyzed based on the transmission-line matrix method. A combining method of components removal and geometric structure simplification is proposed to simplify the whole engine model. Simplified components include compressor, combustion chamber, turbine, and nozzle. The effects of different simplification methods are quantified, and the rationality of the simplified model is verified by simulation analysis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3