A Privacy-Preserving Incentive Mechanism for Data Offloading in Satellite-Terrestrial Crowdsensing

Author:

Zhu Boxiang1ORCID,Li Jiarui2ORCID,Liu Zhongkai3,Liu Yang4ORCID

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Department of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. International School, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Data offloading algorithm is the foundation of urban Internet of Things, which has gained attention for its large size of user engagement, low cost, and wide range of data sources, replacing traditional crowdsensing in areas such as intelligent vehicles, spectrum sensing, and environmental surveillance. In data offloading tasks, users’ location information is usually required for optimal task assignment, while some users in remote areas are unable to access base station signals, making them incapable of performing sensing tasks, and at the same time, there are serious concerns about users’ privacy leakage about their locations. Until today, location protection for task assignment in data offloading has not been well explored. In addition, existing privacy protection algorithms and data offloading task assignment mechanisms cannot provide personalized protection for different users’ privacy protection needs. To this end, we propose an algorithm known as differential private long-term privacy-preserving auction with Lyapunov stochastic theory (DP-LAL) for data offloading based on satellite-terrestrial architecture that minimizes the total payment. This not only gives an approximate optimal total payment in polynomial time but also improves the issue of poor signal in remote areas. Meanwhile, satellite-terrestrial data offloading architecture integrates wireless sensor networks and cloud computing to provide real-time data processing. What is more, we have considered long-term privacy protection goals. We employ reverse combinatorial auction and Lyapunov optimization theorem to jointly optimize queue stability and total payment. More importantly, we use Lyapunov optimization theorem to jointly optimize queue stability and total payment. We prove that our algorithm is of high efficiency in computing and has good performance in various economic attributes. For example, our algorithms are personally rational, budget-balanced, and true to the buyer and seller. We use large-scale simulations to evaluate the proposed algorithm, and compare our algorithm with existing algorithms, our algorithm shows higher efficiency and better economic properties.

Funder

Beijing University of Posts and Telecommunications

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3