A Study on the Prediction of House Price Index in First-Tier Cities in China Based on Heterogeneous Integrated Learning Model

Author:

Mao Yaqi1ORCID,Duan Yonghui1,Guo Yibin2,Wang Xiang2ORCID,Gao Shen1

Affiliation:

1. Department of Civil Engineering, Henan University of Technology, No. 100, Lianhua Street, Gaoxin District, Zhengzhou 450001, China

2. Department of Civil Engineering, Zhengzhou University of Aeronautics, No. 15, Wenyuan West Road, Zhengdong New District, Zhengzhou 450015, China

Abstract

To address the difficulty of low prediction accuracy, insufficient model stability, and certain lag associated with a single machine learning model in the prediction of house price, this paper proposes a multimodel fusion house price prediction model based on stacking integrated learning. Firstly, web search data affecting house prices were collected by web crawler technology, and Spearman correlation analysis was performed on the attribute set to reduce its complexity and establish a prediction index system for four first-tier cities in China. Secondly, with the goal of improving accuracy, diversity, and generalization ability, the types of base learners as well as metalearners are determined, and the parameters of the base learners are optimized using the grey wolf optimization algorithm to produce the GWO-stacking model, and the experimental results from four datasets demonstrate that the model has high prediction accuracy. Finally, to solve the issue of unintelligible black boxes in machine learning models, we have used the state-of-the-art interpretation method SHAP combined with the LightGBM algorithm to interpret the model, and the result can be used as a basis for real estate policy planning and adjustment and even guide the demand of home buyers, thus improving the efficiency and effectiveness of government policy making.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3