A Multiscale Symbolic Dynamic Entropy Analysis of Traffic Flow

Author:

Cui Zhanyou1ORCID,Chen Gaoli1,Liu Bing2,Li Deguang3ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China

2. Henan Forestry Vocational College, Luoyang 471002, China

3. School of Information Technology, Luoyang Normal University, Luoyang 471934, China

Abstract

The complexity analysis of traffic flow is important for understanding the property of traffic system. Being good at analyzing the regularity and complexity, multiscale SamEn has attracted much attention and many methods have been proposed for complexity analysis of traffic flow. However, there may exist discontinuity of the calculated entropy value which makes the regularity of the traffic system difficult to understand. The phenomenon occurs due to an inappropriate selection of the parameter r in the multiscale SamEn. Moreover, it is difficult to select an appropriate r for the accurate evaluation of the complexity, which limits the application of multiscale entropy for traffic flow analysis. To solve this problem, a new entropy-based method, multiscale symbolic dynamic entropy, for evaluating the traffic system is proposed here. To verify the effectiveness of the proposed method, traffic data collected from stations in different cities are preprocessed by the proposed method. Both results of two cases show that the weekend patterns and weekday patterns are effectively distinguished using the proposed method, respectively. Specifically, compared with the traditional methods including multiscale SamEn and the multiscale modified SamEn, the complexity of the corresponding traffic system can be better evaluated without considering the selection of r, which demonstrates the effectiveness of the proposed method.

Funder

Science and Technology Key Project of Henan Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3