Intelligent Turning Tool Monitoring with Neural Network Adaptive Learning

Author:

Du Maohua1ORCID,Wang Peixin1,Wang Junhua2,Cheng Zheng1ORCID,Wang Shensong1ORCID

Affiliation:

1. Department of Mechanical Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Tool state monitoring is a key technology in intelligent manufacturing. But it is still in a research stage and lacks general adaptability for different machining conditions. To overcome this limitation, this work systematically investigates an intelligent, real-time, and visible tool state monitoring through adopting integrated theories and technologies, i.e., (a) through distinctively designed experimental technique with comprehensive consideration of cutting parameters and tool wear values as variables, (b) through bisensor fusion for simultaneous measurements of low and high frequency signals, (c) through multitheory fusion of wavelet decomposition and the Relief-F algorithm for performing dual feature extraction and feature dimension reduction to achieve more accurate state identification using neural network, and (d) through an innovative programming technique of MATLAB-nested labVIEW. This tool monitoring system has neural network adaptive learning ability with the change of the experimental sample signals which are collected simultaneously by selected vibration and acoustic emission (AE) sensors in all factors turning experiments. Based on LabVIEW and MATLAB hybrid programming, the waveforms of signals are observed and the significant characteristics of signals are extracted through the time-frequency domain analysis and then the calculation of the energy proportion of each frequency band obtained using 4 levels of wavelet packet decompositions of the vibration signal as well as 8 levels of wavelet multiresolution decompositions of the AE signal; the ensuing Relief-F algorithm is used to further reextract the features that are most relevant to the tool state as input of neural network pattern recognition. Through the BP neural network adaptive learning, tool state recognition model is finally established. The results show that the correct recognition rate of BP network model after samples training is 92.59%, which can more accurately and intelligently monitor the tool wear state.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3