Interfacial Transport Study of Ultra-Thin InN-Enhanced Quantum Dot Solar Cells

Author:

Wang Shuaijie1ORCID,Zhang Dong1,Ju Zhenhe1

Affiliation:

1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China

Abstract

For human society, all activities require energy support. Solar cells are a means of converting solar energy into electrical energy using the photovoltaic effect of semiconductor materials. This photoelectric absorber layer has been developed for more than 70 years. Currently, the layered solar panel industry has achieved an energy conversion efficiency of 47%. In addition to efficiency, the cost of solar cells has been optimized, and the cost of commercial silicon solar cells has been greatly reduced. There is an urgent need for energy transfer research through the solar cell interface. Many researchers are studying and discovering new elements in this field. On this basis, the transmission ion interface of ultra-thin in-amplified quantum solar cell panels was studied, and very effective conclusions were drawn on the basis of experimental preparation and analysis.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3