Preparation and Electrochemical Performance Analysis of Flexible Ionic Polymers by Freeze-Drying Technology

Author:

Zhao Jintao1,Shao Junpeng1ORCID,Zhang Zhenjie1ORCID,Liang Bo1ORCID,Yuan Mingchao1,Wang Hanyu1

Affiliation:

1. School of Mechanical and Power Engineering, Harbin University of Science and Technology, No. 52 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang, China

Abstract

With the development of bionics and marine science, a new artificial muscle material, IPMC (ion-exchange polymer metal composite), has attracted significant attention. However, the performance issues, as well as problems associated with the preparation of IPMC, have limited its development. In this study, we use the freeze-drying technique, successfully creating a new type of enhanced carbon nanotube IPMC material. Moreover, we also use the method of cyclic voltammetry, ac impedance, and the constant current charge and discharge method to analyze and evaluate the multiwalled carbon nanotube (MWCNT)-reinforced IPMC produced by freeze-drying technology. Freeze-dried IPMC has a higher moisture content, which is 1.58 times higher than that of ordinary IPMC. The pore and multiwalled carbon nanotube (MWCNT) in the ion exchange membrane are distributed more homogeneously. The technology prepared by IPMC has superior electrical performance. Under a 2 v scanning interval and a scanning speed of 50 mV/s, its specific capacitance can reach 247.5335 mF/cm−2, which is 24 times that of normal IPMC. Under the same conditions, its conductivity can reach 0.29391 mS/cm, far higher than that of ordinary IPMC. Furthermore, the preparation process is also safer. This method provides a new strategy for the future preparation and usage of IPMC.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3