A Novel Hybrid MPPT Controller for PEMFC Fed High Step-Up Single Switch DC-DC Converter

Author:

Rafikiran Shaik1ORCID,Basha C. H. Hussaian2ORCID,Dhanamjayulu C.3ORCID

Affiliation:

1. Sri Venkateshwara College of Engineering (Autonomous), Tirupati 517507, Andhra Pradesh, India

2. EV R&D Laboratory, NITTE Meenakshi Institute of Technology, Bengaluru 560064, India

3. School of Electrical Engineering, Vellore Institute of Technology, Vellore, India

Abstract

At present, there are different types of Renewable Energy Resources (RESs) available in nature which are wind, tidal, fuel cell, and solar. The wind, tidal, and solar power systems give discontinuous power supply which is not suitable for the present automotive systems. Here, the Proton Exchange Membrane Fuel Stack (PEMFS) is used for supplying the power to the electrical vehicle systems. The features of fuel stack networks are very quick static response, plus low atmospheric pollution. Also, this type of power supply system consists of high flexibility and more reliability. However, the fuel stack drawback is a nonlinear power supply nature. As a result, the functioning point of the fuel stack varies from one position to another position on the V-I curve of the fuel stack. Here, the first objective of the work is the development of the Grey Wolf Optimization Technique (GWOT) involving a Fuzzy Logic Controller (FLC) for finding the Maximum Power Point (MPP) of the fuel stack. This hybrid GWOT-FLC controller stabilizes the source power under various operating temperature conditions of the fuel stack. However, the fuel stack supplies very little output voltage which is improved by introducing the Single Switch Universal Supply Voltage Boost Converter (SSUSVBC) in the second objective. The features of this proposed DC-DC converter are fewer voltage distortions of the fuel stack output voltage, high voltage conversion ratio, and low-level voltage stress on switches. The fuel stack integrated SSUSVBC is analyzed by selecting the MATLAB/Simulink window. Also, the proposed DC-DC converter is tested by utilizing the programmable DC source.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3