Evaluating Deep Neural Network Architectures with Transfer Learning for Pneumonitis Diagnosis

Author:

Krishnamurthy Surya1ORCID,Srinivasan Kathiravan2ORCID,Qaisar Saeed Mian3ORCID,Vincent P. M. Durai Raj4ORCID,Chang Chuan-Yu5ORCID

Affiliation:

1. iQGateway, Bangalore, India

2. School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Vellore, India

3. Electrical and Computer Engineering Department, Effat University, Jeddah, Saudi Arabia

4. School of Information Technology and Engineering, Vellore Institute of Technology (VIT), Vellore, India

5. Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

Abstract

Pneumonitis is an infectious disease that causes the inflammation of the air sac. It can be life-threatening to the very young and elderly. Detection of pneumonitis from X-ray images is a significant challenge. Early detection and assistance with diagnosis can be crucial. Recent developments in the field of deep learning have significantly improved their performance in medical image analysis. The superior predictive performance of the deep learning methods makes them ideal for pneumonitis classification from chest X-ray images. However, training deep learning models can be cumbersome and resource-intensive. Reusing knowledge representations of public models trained on large-scale datasets through transfer learning can help alleviate these challenges. In this paper, we compare various image classification models based on transfer learning with well-known deep learning architectures. The Kaggle chest X-ray dataset was used to evaluate and compare our models. We apply basic data augmentation and fine-tune our feed-forward classification head on the models pretrained on the ImageNet dataset. We observed that the DenseNet201 model outperforms other models with an AUROC score of 0.966 and a recall score of 0.99. We also visualize the class activation maps from the DenseNet201 model to interpret the patterns recognized by the model for prediction.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3