Affiliation:
1. Mechanical Department, Mohammadia School of Engineers, Mohammed V University, Rabat, Morocco
2. LIMSAD, Fsac, Hassan II University of Casablanca, Casablanca, Morocco
Abstract
Spur gears are an indispensable element of power transmission, most of the time used in small environments with severe operating conditions such as high temperature, vibrations, and humidity. For this reason, manufacturers and transmission designers are required to look for better gear designs and higher efficiency. In this paper, a multiobjective optimization was conducted, using genetic algorithms (GAs) for corrected spur gear pair with an objective to reduce the structure volume and transmission power loss and reveal the influence of the profile shift factor on the optimal structure fitness. The optimization variables included are the pinion and wheel profile shift factors in addition to the module, face width, and the number of pinion teeth mostly used in standard gear optimization. The profile shift factor influences the shape of the gear teeth, the contact ratio, and the load sharing. It affects then the optimal results meaningfully. The gear pair volume, center distance, and efficiency presented the objective functions while contact stress, bending stress, face with coefficient, and tooth tip interferences served as constraints. Furthermore, a volume equation was developed, in which a bottom clearance formula is included for more accurate results. "Multiobjective optimization" is conducted at medium and high speeds, and the results show that the structure design is compact compared to standard gears with reasonable efficiency for medium contact ratio.
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献