Feature Selection Using Maximum Feature Tree Embedded with Mutual Information and Coefficient of Variation for Bird Sound Classification

Author:

Xu Haifeng1ORCID,Zhang Yan1ORCID,Liu Jiang1ORCID,Lv Danjv1ORCID

Affiliation:

1. College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China

Abstract

The classification of bird sounds is important in ecological monitoring. Although extracting features from multiple perspectives helps to fully describe the target information, it is urgent to deal with the enormous dimension of features and the curse of dimensionality. Thus, feature selection is necessary. This paper proposes a scoring feature method named MICV (Mutual Information and Coefficient of Variation), which uses the coefficient of variation and mutual information to evaluate each feature’s contribution to classification. And then, a method named ERMFT (Eliminating Redundancy Based on Maximum Feature Tree) based on two neighborhoods to eliminate redundancy to optimize features is explored. These two methods are combined as the MICV-ERMFT method to select the optimal features. Experiments are conducted to compare eight different feature selection methods with two sounds datasets of bird and crane. Results show that the MICV-ERMFT method outperforms other feature selection methods in the accuracy of the classification and is less time-consuming.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling relevant acoustic features for bird species automatic classification;Expert Systems with Applications;2024-12

2. A Novel Spatiotemporal Periodic Polynomial Model for Predicting Road Traffic Speed;Symmetry;2024-04-30

3. Component Analysis of Ancient Glass Based on Neural Network;Highlights in Science, Engineering and Technology;2023-11-06

4. Birdsong Recognition Method Based on Gabor and LBP Feature Fusion;2023 7th International Conference on Communication and Information Systems (ICCIS);2023-10-20

5. A hierarchical birdsong feature extraction architecture combining static and dynamic modeling;Ecological Indicators;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3