Milling Tool Wear State Recognition by Vibration Signal Using a Stacked Generalization Ensemble Model

Author:

Hui Yang123ORCID,Mei Xuesong123,Jiang Gedong123ORCID,Tao Tao123,Pei Changyu3,Ma Ziwei3

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China

2. Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an 710049, China

3. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Milling tool wear state recognition plays an important role in controlling the quality of milled parts and reducing machine tool downtime. However, the characteristics of milling process limit the accuracy and stability of tool condition monitoring (TCM) employing vibration signals. To improve this problem, this paper explores the use of vibration signals as sensing approach for recognizing tool wear states during milling operation by using the stacked generalization (SG) ensemble model. In this study, vibration signals collected during the milling process are analyzed through the time domain, frequency domain, and time-frequency domain to extract signal features. The support vector machine recursive feature elimination (SVM-RFE) algorithm is used to select the main features which are most relevant to tool wear states. The SG ensemble model based on SVM, decision tree (DT), naive Bayes (NB), and SG ensemble strategy is constructed to recognize tool wear states. The proposed method is experimental verified, and the results show that the recognition accuracy of the established SG ensemble model is 98.74% and the overall G-mean and AUC evaluation value of the model is 0.98 and 0.98, respectively. In addition, compared with other ensemble models and single models, the SG ensemble model based on vibration signals has better recognition accuracy and stability than other models.

Funder

National Key Research and Development Project of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3