DOA and Polarization Parameters Estimation by Exploiting Canonical Polyadic Decomposition of Tensors

Author:

Liu Long1ORCID,Wang Ling12ORCID,Xie Jian12ORCID,Zhang Zhaolin2ORCID

Affiliation:

1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

2. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China

Abstract

A new algorithm to estimate the direction of arrival (DOA) and polarization parameters of signals impinging on an array with electromagnetic (EM) vector-sensors is presented by exploiting the canonical polyadic decomposition (CPD) of tensors. In addition to spatial and temporal diversities, further information from the polarization domain is considered and used in this paper. Estimation errors of these parameters are evaluated by the Cramér-Rao lower bound (CRB) benchmark, in the presence of additive white Gaussian noise (AWGN). The superiority of the proposed algorithm is shown by comparing with the derivative algorithms of MUSIC and ESPRIT. In the proposed algorithm, the parameters can be estimated by virtue of the diversities of the spatial and polarization belonging to the factor matrices, rather than the conventional subspace which is the foundation of MUSIC and ESPRIT. Additionally, the classical CPD algorithm based on Alternating Least Squares (ALS) is introduced to verify the efficacy of the proposed CPD algorithm. Results demonstrate that when the number of snapshots is greater than 50, the proposed algorithm requires a smaller number of snapshots to achieve a high level of performance, compared against the subspace-based algorithms and the ALS-based algorithm. Furthermore, in the matter of the array with a small number of sensors, the discovered advantage concerning the Root Mean Square Error (RMSE) in estimating the DOA and the polarization state of the signal is noteworthy.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coherent Signal Parameter Estimation by Exploiting Decomposition of Tensors;Mathematical Problems in Engineering;2019-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3