Stability Analysis of Jointed Rock Cutting Slope Based on Discrete Element Method

Author:

Zhu Wei1,Gao Liang1,Zhao Yingai1,Yang Chao2,Sun Wei3,Yu Pengqiang3ORCID

Affiliation:

1. PowerChina Roadbridge Group Co., Ltd., Beijing 100044, China

2. PowerChina Zhongnan Engineering Corporation Limited, Changsha, Hunan 410014, China

3. University of Science and Technology Beijing, Beijing 100083, China

Abstract

The joints in the rock mass are essential for the stability of rocky slopes, and the destabilization damage of the slope is often directly related to the joints. In this study, in order to reveal the instability process and mechanism of rock slopes from a microscale perspective, the DEM simulations for rocky slopes of the K88 + 400∼K88 + 540 section of Zhongkai Expressway are carried out considering the influence of joints. Based on the findings of the on-site jointed structural surfaces, a rocky slope model containing two sets of intermittent joints was constructed, and the linear parallel bond model and the smooth joint model are used to characterize the rock body and joints, respectively. The evolution of microfracture, contact force chain, and particle displacement are analyzed to explore the micromechanism of slope instability. Finally, the triple reinforcement scheme of anchor cable frame and grass planting is proposed. The research results can provide a reference for stability analysis and reinforcement of similar rocky slope projects.

Funder

PowerChina Roadbridge Group Co. Ltd.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3