Simultaneous Recognition of Species, Quality Grades, and Multivariate Calibration of Antioxidant Activities for 12 Famous Green Teas Using Mid- and Near-Infrared Spectroscopy Coupled with Chemometrics

Author:

Fu Haiyan1,Hu Ou1,Xu Lu2ORCID,Fan Yao3,Shi Qiong1,Guo Xiaoming1,Lan Wei1,Yang Tianming1,Xie Shunping4,She Yuanbin3ORCID

Affiliation:

1. The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China

2. College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China

3. State Key Laboratory of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

4. Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550009, Guizhou, China

Abstract

In this paper, mid- and near-infrared spectroscopy fingerprints were combined to simultaneously discriminate 12 famous green teas and quantitatively characterize their antioxidant activities using chemometrics. A supervised pattern recognition method based on partial least square discriminant analysis (PLSDA) was adopted to classify the 12 famous green teas with different species and quality grades, and then optimized sample-weighted least-squares support vector machine (OSWLS-SVM) based on particle swarm optimization was employed to investigate the quantitative relationship between their antioxidant activities and the spectral fingerprints. As a result, 12 famous green teas can be discriminated with a recognition rate of 100% by MIR or NIR data. However, compared with individual instrumental data, data fusion was more adequate for modeling the antioxidant activities of samples with RMSEP of 0.0065. Finally, the performance of the proposed method was evaluated and validated by some statistical parameters and the elliptical joint confidence region (EJCR) test. The results indicate that fusion of mid- and near-infrared spectroscopy suggests a new avenue to discriminate the species and grades of green teas. Moreover, the proposed method also implies other promising applications with more accurate multivariate calibration of antioxidant activities.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3