MiR-221 Promotes Hepatocellular Carcinoma Cells Migration via Targeting PHF2

Author:

Fu Yi1ORCID,Liu Mingyan2,Li Fengxia2,Qian Li2,Zhang Ping3,Lv Fengwei2,Cheng Wenting2,Hou Ruixing3ORCID

Affiliation:

1. Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215007, China

2. School of Medicine, Yangzhou University, Yangzhou 225001, China

3. Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215007, China

Abstract

MicroRNAs (MiRNAs), which regulate the gene expression leading to translational inhibition or mRNA degradation, are involved in carcinogenesis and tumor progression. Previous studies have demonstrated that miR-221 was one of the most consistent overexpressed miRNAs in several types of cancer. However, the role of miR-221 in human liver cancer progression is not yet fully elucidated. Levels of miR-221 and plant homeodomain finger 2 (PHF2) expressions in human hepatocellular carcinoma (HCC) tissues and cell lines were detected using western blotting and quantitative real-time PCR (qRT-PCR). Cell migration was studied using the transwell assays. A dual-luciferase reporter system was used to validate the target gene of miR-221. The results indicated that miR-221 promoted HCC cell migration. By performing subsequent systematic bioinformatic analyses, we found PHF2 was the target gene of miR-221 and the direct binding relationship was further validated by dual-luciferase reporter assay. In addition, lower expression of PHF2 promoted HCC cell migration and linked to worse overall survival in HCC patients. Finally, the negative correlation between miR-221 and PHF2 expression levels in HCC specimens was further confirmed. Taken together, our findings implied that miR-221 could be a potential candidate for the therapeutics of HCC metastasis.

Funder

Soochow Science and Technology Plan

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3