Towards a Better Knowledge of Natural Methane Releases in the French Alps: A Field Approach

Author:

Gal Frédérick1ORCID,Proust Eric1,Kloppmann Wolfram1

Affiliation:

1. BRGM, 45060 Orléans, France

Abstract

We report investigations performed at some hydrocarbon gas seeps located in the French Subalpine Chains in zones of outcropping Jurassic black shales, increasing the reported number of such occurrences in this part of the Alps. We present the characteristics of each of the seeps, based on soil flux measurements and soil gas measurements. Gases emitted are CH4-rich (87–94%) with the exception of one site (78.5% CH4 + 8.2% CO2) where an active landslide may induce dilution by atmospheric air. CO2 is generally measured at low levels (<1.6%). Concentrations in C2H6 are more variable, from less than 1% to more than 2.3%. Gas is emitted over areas of various sizes. The smallest gas emission area measures only 60×20cm, characterized by a strong hydrocarbon flux (release of about 100 kg of CH4 per year). At a second site, hydrocarbon emissions are measured over a surface of 12 m2. For this site, methane emission is evaluated at 235 kg per year and CO2 emission is 600 kg per year, 210 kg being related to gas seepage. At the third site, hydrocarbons are released over a 60 m2 area but strong gas venting is restricted to localized seeps. Methane emission is evaluated at 5.1 tons per year and CO2 emission at 1.58 tons per year, out of which 0.53 tons are attributed to gas seepage. Several historical locations remain uninvestigated at present, and numerous others may still be unknown. We outline strategies to search for such unrecorded sites. Considering the topography of the potential alpine and perialpine emission areas, the possibilities to detect gas emissions appear of the size recorded so far seem to be restricted to ground-based methods or to methods offering the possibility to point orthogonally to the soil towards the seep maximum. If such sites are to be investigated in the future in the frame of Environmental Baseline Assessment (EBA), even establishing appropriate monitoring protocols will be challenging.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3