Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes

Author:

Kalaichelvan Kalaiarasi1,Kausar Nasreen2,Kousar Sajida3,Karaca Yeliz4,Pamucar Dragan5ORCID,Salman Mohammed Abdullah6ORCID

Affiliation:

1. PG and Research Department of Mathematics, Cauvery College for Women (Affiliated to Bharathidasan University), Tiruchirappalli 620018, Tamil Nadu, India

2. Department of Mathematics, Yildiz Technical University, Faculty of Arts and Science, Esenler 34210, Istanbul, Turkey

3. Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad, Pakistan

4. University of Massachusetts Medical School (UMASS), Worcester, MA 01655, USA

5. Department of Logistics, University of Defence in Belgrade, Belgrade, Serbia

6. College of Education, Applied Sciences and Arts, Amran University, Amran, Yemen

Abstract

Fuzzy mathematics-informed methods are beneficial in cases when observations display uncertainty and volatility since it is of vital importance to make predictions about the future considering the stages of interpreting, planning, and strategy building. It is possible to realize this aim through accurate, reliable, and realistic data and information analysis, emerging from past to present time. The principal expenditures are treated as fuzzy numbers in this article, which includes a blurry categorial prototype with pattern-diverse stipulation and collapse with salvation worth. Multiple parameters such as a shortage, ordering, and degrading cost are not fixed in nature due to uncertainty in the marketplace. Obtaining an accurate estimate of such expenditures is challenging. Accordingly, in this research, we develop an adaptive and integrative economic order quantity model with a fuzzy method and present an appropriate structure to manage such uncertain parameters, boosting the inventory system’s exactness, and computing efficiency. The major goal of the study was to assess a set of changes to the company current inventory processes that allowed an achievement in its inventory costs optimization and system development in optimizing inventory costs for better control and monitoring. The approach of graded mean integration is used to determine the most efficient actual solution. The evidence-based model is illustrated with the help of appropriate numerical and sensitivity analysis through the related visual graphical depictions. The proposed method in our study aims at investigating the economic order quantity (EOQ), as the optimal order quantity, which is significant in inventory management to minimize the total costs related to ordering, receiving, and holding inventory in the dynamic domains with nonlinear features of the complex dynamic and nonlinear systems as well as structures.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3