Attitude and Vibration Control of Flexible Spacecraft Using Singular Perturbation Approach

Author:

Shahravi Morteza1,Azimi Milad1

Affiliation:

1. Space Research Institute, Tehran 15875-1774, Iran

Abstract

This paper addresses a composite two-time-scale control system for simultaneous three-axis attitude maneuvering and elastic mode stabilization of flexible spacecraft. By choosing an appropriate time coordinates transformation system, the spacecraft dynamics can be divided into double time-scale subsystems using singular perturbation theory (SPT). Attitude and vibration control laws are successively designed by considering a time bandwidths separation between the oscillatory flexible parts motion describing a fast subsystem and rigid body attitude dynamics as a slow subsystem. A nonlinear quaternion feedback control, based on modified sliding mode (MSM), is chosen for attitude control design and a strain rate feedback (SRF) scheme is developed for suppression of vibrational modes. In the attitude control law, the modification to sliding manifold for slow subsystem ensures that the spacecraft follows the shortest possible path to the sliding manifold and highly reduces the switching action. Stability proof of the overall closed-loop system is given via Lyapunov analysis. The proposed design approach is demonstrated to combine excellent performance in the compensation of residual flexible vibrations for the fully nonlinear system under consideration, as well as computational simplicity.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3