Affiliation:
1. Laboratório de Armazenamento de Energia e Tratamento de Efluentes (LAETE), Instituto de Química, Universidade Federal de Uberlândia (UFU), Avenida João Naves de Ávila 2121, 38408-100 Uberlândia, MG, Brazil
Abstract
Polypyrrole (PPy) is one of the most studied conducting polymers and a very promising material for various applications such as lithium-ion secondary batteries, light-emitting devices, capacitors, and supercapacitors, owing to its many advantages, including good processability, easy handling, and high electronic conductivity. In this work, PPy films were chemically and electrochemically synthesized, both in and around carbon nanotubes (CNTs). The cyclic voltammograms of the device, composed of the electrochemically synthesized PPy/CNT composites as working and counter electrodes (Type I supercapacitor with p-type doping), showed a predominantly capacitive profile with low impedance values and good electrochemical stability, with the anodic charge remaining almost constant (11.38 mC), a specific capacitance value of 530 F g−1after 50 charge and discharge cycles, and a coulombic efficiency of 99.2%. The electrochemically synthesized PPy/CNT composite exhibited better electrochemical properties compared to those obtained for the chemically synthesized composite. Thus, the electrochemically synthesized PPy/CNT composite is a promising material to be used as electrodes in Type I supercapacitors.
Funder
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Subject
General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献