Affiliation:
1. School of Mechanical Electronic and Vehicle Engineering, WeiFang University, Weifang 261061, China
Abstract
A novel numerical method for investigating time-dependent reliability and sensitivity issues of dynamic systems is proposed, which involves random structure parameters and is subjected to stochastic process excitation simultaneously. The Karhunen–Loève (K-L) random process expansion method is used to express the excitation process in the form of a series of deterministic functions of time multiplied by independent zero-mean standard random quantities, and the discrete points are made to be the same as Legendre integration points. Then, the precise Gauss–Legendre integration is used to solve the oscillation differential functions. Considering the independent relationship of the structural random parameters and the parameters of random process, the time-varying moments of the response are evaluated by the point estimate method. Combining with the fourth-moment method theory of reliability analysis, the dynamic reliability response can be evaluated. The dynamic reliability curve is useful for getting the weakness time so as to avoid breakage. Reliability-based sensitivity analysis gives the importance sort of the distribution parameters, which is useful for increasing system reliability. The result obtained by the proposed method is accurate enough compared with that obtained by the Monte Carlo simulation (MCS) method.
Funder
Natural Science Foundation of Shandong Province
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献