Affiliation:
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China
2. Electric Operations and Control Centers, Chengdu Power Supply Company, Chengdu 610017, China
Abstract
Methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2C2) are important fault characteristic hydrocarbon gases dissolved in power transformer oil. Online monitoring these gaseous components and their generation rates can present the operational state of power transformer timely and effectively. Gas sensing technology is the most sticky and tricky point in online monitoring system. In this paper, pure and Pd-doped SnO2nanoparticles were synthesized by hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The gas sensors were fabricated by side-heated preparation, and their gas sensing properties against CH4, C2H6, C2H4, and C2H2were measured. Pd doping increases the electric conductance of the prepared SnO2sensors and improves their gas sensing performances to hydrocarbon gases. In addition based on the frontier molecular orbital theory, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy were calculated. Calculation results demonstrate that C2H4has the highest occupied molecular orbital energy among CH4, C2H6, C2H4, and C2H2, which promotes charge transfer in gas sensing process, and SnO2surfaces capture a relatively larger amount of electric charge from adsorbed C2H4.
Funder
China Postdoctoral Science Foundation
Subject
General Materials Science
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献