Pd-Doped SnO2-Based Sensor Detecting Characteristic Fault Hydrocarbon Gases in Transformer Oil

Author:

Chen Weigen1,Zhou Qu1ORCID,Gao Tuoyu1,Su Xiaoping2,Wan Fu1

Affiliation:

1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China

2. Electric Operations and Control Centers, Chengdu Power Supply Company, Chengdu 610017, China

Abstract

Methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2C2) are important fault characteristic hydrocarbon gases dissolved in power transformer oil. Online monitoring these gaseous components and their generation rates can present the operational state of power transformer timely and effectively. Gas sensing technology is the most sticky and tricky point in online monitoring system. In this paper, pure and Pd-doped SnO2nanoparticles were synthesized by hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The gas sensors were fabricated by side-heated preparation, and their gas sensing properties against CH4, C2H6, C2H4, and C2H2were measured. Pd doping increases the electric conductance of the prepared SnO2sensors and improves their gas sensing performances to hydrocarbon gases. In addition based on the frontier molecular orbital theory, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy were calculated. Calculation results demonstrate that C2H4has the highest occupied molecular orbital energy among CH4, C2H6, C2H4, and C2H2, which promotes charge transfer in gas sensing process, and SnO2surfaces capture a relatively larger amount of electric charge from adsorbed C2H4.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3