Self-Organizing Wearable Device Platform for Assisting and Reminding Humans in Real Time

Author:

Park Yu Jin1,Seong Ki Eun1,Jeong Seol Young2ORCID,Kang Soon Ju1ORCID

Affiliation:

1. School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea

2. Center of Self-Organizing Software Platform, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea

Abstract

Most older persons would prefer “aging in my place,” that is, to remain in good health and live independently in their own home as long as possible. For assisting the independent living of older people, the ability to gather and analyze a user’s daily activity data would constitute a significant technical advance, enhancing their quality of life. However, the general approach based on centralized server has several problems such as the usage complexity, the high price of deployment and expansion, and the difficulty in identifying an individual person. To address these problems, we propose a wearable device platform for the life assistance of older persons that automatically records and analyzes their daily activity without intentional human intervention or a centralized server (i.e., cloud server). The proposed platform contains self-organizing protocols, Delay-Tolerant Messaging system, knowledge-based analysis and alerting for daily activities, and a hardware platform that provides low power consumption. We implemented a prototype smart watch, called Personal Activity Assisting and Reminding (PAAR), as a testbed for the proposed platform, and evaluated the power consumption and the service time of example scenarios.

Funder

Institute for Information and Communications Technology Promotion (IITP)

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3