Affiliation:
1. Department of Mathematics, Pohang University of Science Technology, Kyungbuk, Pohang 790-784, Korea
2. Department of Mathematics, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea
Abstract
Forμ≥0, we consider a linear operatorLμ:A→Adefined by the convolutionfμ∗f, wherefμ=(1−μ)z2F1(a,b,c;z)+μz(z2F1(a,b,c;z))′. Letφ∗(A,B)denote the class of normalized functionsfwhich are analytic in the open unit disk and satisfy the conditionzf′/f≺(1+Az)/1+Bz,−1≤A<B≤1, and letRη(β)denote the class of normalized analytic functionsffor which there exits a numberη∈(−π/2,π/2)such thatRe(eiη(f′(z)−β))>0,(β<1). The main object of this paper is to establish the connection betweenRη(β)andφ∗(A,B)involving the operatorLμ(f). Furthermore, we treat the convolutionI=∫0z(fμ(t)/t)dt ∗f(z)forf∈Rη(β).
Funder
Korea Science and Engineering Foundation
Subject
Mathematics (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献