Structural Behaviour of Metakaolin Geopolymer Concrete Wall-Type Abutments with Connected Wing Walls

Author:

Verma Parth1ORCID,Dhurvey Priyanka1ORCID,Sundramurthy Venkatesa Prabhu2ORCID

Affiliation:

1. Department of Civil Engineering, MANIT-Bhopal-462003, Madhya Pradesh, India

2. Department of Chemical Engineering & Center of Excellence for Bioprocess and Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia

Abstract

This study work is related to exploring the role of connected wing walls in changing the behaviour of a metakaolin geopolymer wall type abutment when acted upon by all the forces that are generally applied on a short-span bridge. The modelling of abutment with connected wing walls is done using the STAAD Pro V8i SS6 software and all the loading applied for the analysis as per IRC: 6-2016. The modelling is done using the 4-noded plate elements for all the members, and the plate elements here are meshed using the quadrilateral meshing feature. The behaviour of the metakaolin geopolymer wall-type abutment is analyzed using various models with changing the basic parameters such as length of the wing walls, height of the walls, number of lanes on the bridge, and type of live load on the bridge. The various results are obtained in the form of bending moments from all the cases, which show us some really interesting behaviour of the abutment wall and the wing walls. As the length of the wing walls is increased, they take up more horizontal moments than the abutment wall and the deflection behaviour of the wing walls is way different than that of cantilever wall, and hence, it shows that the design aspects of the wing walls need to be checked. Also, the connected wing walls cause horizontal moments in the middle of the abutment wall, which is an interesting result; as now, it proves that after casting wing walls monolithically to the abutment wall, the design of the abutment wall cannot be done as cantilever wall, and we need to take care of this horizontal moment by providing required reinforcement. Also, as the length of the wing walls is short, the torsional moments become critical.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference23 articles.

1. Effect of live load surcharge on retaining walls and abutments;J. S. Kim;Journal of Geotechnical and Geoenvironmental Engineering,2002

2. Design of bridges utilizing a novel earthquake resistant abutment with high capacity wing walls;S. A. Mitoulis;Engineering Structures,2014

3. Effect of abutment modeling on the seismic response of bridge structures;A. Aviram;Earthquake Engineering and Engineering Vibration,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3