Spent Tea Leaves and Coffee Grounds as Potential Biocathode for Improved Microbial Electrosynthesis Performance

Author:

Tahir Khurram1ORCID,Ali Abdul Samee1ORCID,Kim Bolam1ORCID,Lim Youngsu1ORCID,Lee Dae Sung1ORCID

Affiliation:

1. Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

Abstract

Microbial electrosynthesis (MES) has emerged as a sustainable energy platform capable of simultaneous wastewater treatment and valuable chemical production. The performance of MES, like other bioelectrochemical systems, largely depends on its electrode (cathode), providing the platform for microbial growth as well as electron transfer. However, most of the electrodes are expensive, and their nonrenewable characteristics, cost, and poisoning nature are major bottlenecks in MES commercialization. Thus, several efforts have been made to explore the potential of waste carbon-based electrodes to reduce carbon footprints as well as electrode manufacturing costs. In this study, the feasibility of using spent tea leaves (STL) and spent coffee grounds (SCG) as MES biocathode was tested. Different bioelectrochemical tests suggested improved MES performance with STL and SCG biocathode along with reduced electrode resistance and improved current density. A 1.5- and 2.0-fold increase in cyclic voltammetry (CV) current output was observed for SCG and STL, respectively, with substantial mediator peaks of high intensity indicating enhanced electrocatalytic activity. Enrichment of some fermentative and exoelectrogenic microbial classes such as Clostridia, Bacteroidia, and Deltaproteobacteria led to a 1.3- and 1.4-fold increase in butyrate production for SCG and STL cathode, respectively. These results demonstrate the potential of STL and SCG as MES cathode for improved energy and chemical production.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3