Phase-Field-Based LBM Analysis of KHI and RTI in Wide Ranges of Density Ratio, Viscosity Ratio, and Reynolds Number

Author:

Zhou Xun1,Dong Bo1,Li Weizhong1ORCID

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

Numerous studies have elaborated the dominated roles of Kelvin-Helmholtz instability (KHI) and Rayleigh-Taylor instability (RTI) in the liquid sheet breakup and primary atomization. As for applications in aeronautics, the liquid-gas mixing generally occurs at the challenging conditions of a large density ratio and high Reynolds number. Hence, the evaluation of KHI and RTI under such challenging conditions will have great significance in better understanding the destabilizing mechanism of the liquid layer. To this end, a lattice Boltzmann multiple-relaxation-time (MRT) two-phase model, based on the conservative Allen-Cahn equation, is reconstructed for the present study. Preliminarily, the numerical stability and accuracy of this MRT model are tested by Laplace’s law under a large density ratio and high Reynolds number, including the sensitivity study to the values of mobility. Afterward, KHI and RTI are investigated in wide ranges of the Reynolds number, density ratio, and viscosity ratio. Numerical results indicate that the enhanced viscous force of light fluid with an increasing viscosity ratio notably suppresses the roll-ups of heavy fluid in KHI and RTI. As for the density ratio, it generally shows negative impacts on fluid-mixing in KHI and spike-spiraling in RTI. However, when the density ratio and the Reynolds number both arrive at high levels, the Kelvin-Helmholtz wavelets aroused by a dominated inertia force of heavy fluid trigger severe interface disintegration. The above results once more demonstrate the excellent ability of the present model in dealing with challenging conditions. Besides, the morphological characteristics of KHI and RTI at a high Reynolds number and large density ratio also greatly support the typical interface breakup mechanism observed in primary atomization.

Funder

Key Project of National Science Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3