Understanding the Mechanism and Selectivities of the Reaction of Meta-Chloroperbenzoic Acid and Dibromocarbene with β-Himachalene: A DFT Study

Author:

El Hamidi Sana1,Khnifira Malika1,Lemdek El Mokhtar1,Hammal Redouan2,Barka Noureddine1ORCID,Sadiq M’hamed1,Benharref Ahmed2,Chekroun Ahmed2,Zgou Hssaine3,Abdennouri Mohamed1

Affiliation:

1. Sultan Moulay Slimane University, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, B.P. 145 25000, Khouribga, Morocco

2. Cadi Ayyad University, Faculty of Sciences Semlalia, Laboratory of Biomolecular Chemistry Natural Substances and Reactivity (URAC 16), BP 2390, Marrakech, Morocco

3. Ibn Zohr University, Material Sciences, Processes, Environment & Modeling, Polydisciplinary Faculty, Ouarzazate, Morocco

Abstract

This study was performed to understand the site selectivity in the reaction between β-himachalene and meta-chloroperbenzoic acid (m-CPBA) in the first step followed by the addition of dibromocarbene (CBr2) to the main monoepoxidation product Pα formed in the first reaction. Calculations were performed using the Becke three-parameter hybrid exchange functional and the Lee–Yang–Parr correlation functional (B3LYP) with the 6-311 + G (d, p) basis set. Transition states were located by QST2, and their highlighting was validated by the existence of only one imaginary frequency in the Hessian matrix. The action of m-CPBA on β-himachalene was analyzed on the two double bonds of β-himachalene whose theoretical calculations show that the attack affects the most substituted double bond on α side containing hydrogen of ring junction. The obtained Pα product thereafter treated with dibromocarbene leads via an exothermic reaction to the six-membered ring double bond position of α-monoepoxide. The major products Pαα are kinetically and thermodynamically favored with a high stereoselectivity in perfect correlation with the experimental observations.

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3