Quantitative Diagnosis of TCM Syndrome Types Based on Adaptive Resonant Neural Network

Author:

Zhao Yue1ORCID,Huang Yuandi1ORCID

Affiliation:

1. School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China

Abstract

Artificial intelligence has become one of the most rapidly developing disciplines in the application field of pattern recognition. In target recognition, sometimes, there are multiple identical or similar copies of the target to be recognized in the image, and it is difficult to classify and estimate by traditional methods. In this case, it is necessary to use the SOM network to separate multiple targets and use the multiple order parameters in the improved SNN to pair the target. The change of its thickness can intuitively reflect the abnormality of its tissue. Therefore, the choroidal thickness of the central fovea can be measured to study the relationship between the choroidal structure and BRVO and arteriosclerosis. The purpose of this study is to further study the correlation between branch retinal vein occlusion and arteriosclerosis by quantitatively measuring retinal vessel diameter and choroidal thickness, to analyze the correlation between different TCM syndrome types of nonischemic BRVO and retinal arteriosclerosis, and to provide theoretical basis for clinical nonischemic BRVO TCM syndrome types and traditional Chinese medicine treatment, so as to reflect its clinical application value. In order to solve the single fixed structure of traditional SNN and poor scalability, combined with the Kohonen layer structure in the self-organizing mapping network, an improved collaborative neural network model is proposed. This paper studies the network training method and operation convergence and analyzes the converged network and the pattern classification results obtained by the network. In order to solve the single fixed structure of traditional SNN and poor scalability, combined with the Kohonen layer structure in the self-organizing mapping network, an improved collaborative neural network model is proposed. The results of our proposed improved model on the MNIST dataset can achieve the same level of current state-of-the-art machine learning classifiers in recognition accuracy with a smaller network size and network complexity.

Funder

Hong Kong Baptist University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3