Controlling Dielectric and Magnetic Properties of PVdF/Magnetite Nanocomposite Fibre Webs

Author:

Venugopal A. P.1,Cespedes O.2,Russell S. J.1

Affiliation:

1. Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds LS2 9JT, UK

2. Condensed Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Abstract

The ability of filtration and separation media containing fibres to remove impurities from oil, water, and blood can be enhanced using magnetic fields. The ability to regulate the dielectric and magnetic behaviour of fibrous webs in terms of superparamagnetic or ferromagnetic properties by adjusting material composition is fundamental to meeting end-use requirements. Electrospun fibres were produced from PVdF (polyvinylidene fluoride) and nanomagnetite (Fe3O4nanoparticles) from solutions of PVdF in dimethylacetamide containing Fe3O4nanoparticle contents ranging from 3 to 10 wt%. Fibre dimensions, morphology, and nanoparticle agglomeration were characterised by environmental scanning electron microscopy (ESEM) and field emission gun transmission electron microscopy (FEGTEM). Dielectric behaviour of the fibre webs was influenced by web porosity and the Fe3O4nanoparticle content. Impedance analysis of the webs indicated an increase in dielectric constant of80% by the addition of 10 wt% Fe3O4nanoparticles compared to 100 wt% PVdF. The dielectric constants of the webs were compared with those obtained from the theoretical mixing models of Maxwell and Lichtenecker. Vibrating sample magnetometer (VSM) magnetisation measurements indicated a blocking temperature above 300 K suggesting ferrimagnetic rather than superparamagnetic behaviour as a result of Fe3O4nanoparticle agglomeration within fibres.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3