Research on MOOC Teaching Mode in Higher Education Based on Deep Learning

Author:

Tian Yuan1,Sun Yingjie1,Zhang Lijing1,Qi Wanqiang2ORCID

Affiliation:

1. Aviation University of Air Force, Changchun, Jilin 130022, China

2. School of Automotive Engineering, Jilin Teachers Institute of Engineering and Technology, Changchun, Jilin 130022, China

Abstract

With the rapid development of computer technology and network technology and the widespread popularity of electronic equipment, communication among people is more dependent on the Internet. The Internet has brought great convenience to people’s lives and work, and the Internet data is constantly being recorded. People’s data information and behavior information, which provides the basis for data mining and recommendation systems, mining users’ information and behaviors, and providing “user portraits” for each user, can provide better services to users and it is also an important part of the recommendation system. In one step, this article takes MOOC education resources as the research goal. In order to improve the effective management of MOOC platform resources based on traditional methods, this article combines relevant data sets and recommendation techniques to initially build a learning platform, implements a deep neural network algorithm, and recommends related services. The request and response data were explained, and through the online learning data set, based on the learner’s historical learning records, the learning resources were simulated and recommended to the learners. The resource customization module was elaborated. Through the results of resource recommendation, a personalized learning resource recommendation platform was initially realized, which more intuitively demonstrated the recommendation effect and better realized the teaching management of the MOOC platform.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3