Model-Based Study of Creep and Recovery of a Glassy Polymer

Author:

Chowdhury Myisha Ahmed1,Alam Md. Mohibul1,Rahman Md. Mostafizur1,Islam Md. Akhtarul1ORCID

Affiliation:

1. Center for Environmental Process Engineering, Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology (SUST), Sylhet 3114, Bangladesh

Abstract

Polyvinyl chloride specimens were subjected to three different constant loads at ambient temperature, and the creep is monitored as a function of time. After a certain time, the load was withdrawn and the strain recovery was followed with time. Although the deformational behavior of such material is conventionally described by the Burger model consisting of elastic, viscoelastic, and viscous components, in the present work, it is shown that the whole creep recovery process is reversible and is described by three viscoelastic components connected in series. Depending on the relative value of the observation and the relaxation times, the viscoelastic components appear pseudo- elastic or viscous. It is found that the model parameters evaluated from the creep data fail to predict the recovery data in both the initial and the end phases, while those from the recovery data can partially reproduce the creep data (satisfactorily in the late phase and with high deviation in the initial phase). The model parameters vary with stress values, but with a good approximation, they could be averaged for a certain stress range to describe creep processes for a specified time period. The proposed model describes creep data better than the Finley and the Weibull models.

Funder

SUST Research Center

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Reference35 articles.

1. Standard ASASTM D4065: Standard practice for plastics: dynamic mechanical properties: determination and report of procedures2012

2. Mechanical Behaviour of Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3