An IPv6 Passive-Aware Network Routing Algorithm Based on Utility Value Combined with Deep Neural Network

Author:

Wan Zhiping1ORCID,Xu Zhiming1ORCID,Zou Jiajun1ORCID,Liu Shaojiang1ORCID,Ni Weichuan2ORCID,Ye Shitong3ORCID

Affiliation:

1. School of Information Science, Guangzhou Xinhua University, Dongguan 523133, China

2. Facility Management & Laboratory Division, Guangzhou Xinhua University, Dongguan 523133, China

3. Department of Data Science, Guangzhou Huashang College, Guangzhou 511300, China

Abstract

Passive sensing networks can maintain the operation of the network by capturing energy from the environment, thereby solving the energy limitation problem of network nodes. Therefore, passive sensing networks are widely used in data collection in complex environments. However, the complexity of the network deployment environment makes passive sensing nodes unable to obtain stable energy from the surroundings. Therefore, better routing strategies are needed to save network energy consumption. In response to this problem, this paper proposes an IPv6 passive-aware network routing algorithm for the Internet of Things. This method is based on the characteristics of passive sensing networks. By analyzing the successful transmission rate of the network node transmission link, transmission energy consumption, end-to-end transmission delay, and waiting delay of IPv6 packets, the utility evaluation function of the route is obtained. After the utility evaluation function is obtained, the network routing is selected through the utility evaluation function. Then, the utility value and the deep neural network method are combined to train the classification model. The classification model assigns the best routing strategy according to the characteristics of the current network, thereby improving the energy consumption and delay performance of the network.

Funder

Key Discipline Project Guangzhou Xinhua University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3