Efficient Approximation of the Labeled Multi-Bernoulli Filter for Online Multitarget Tracking

Author:

Wang Ping1,Ma Liang1ORCID,Xue Kai1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, Heilongjiang, China

Abstract

Online tracking time-varying number of targets is a challenging issue due to measurement noise, target birth or death, and association uncertainty, especially when target number is large. In this paper, we propose an efficient approximation of the Labeled Multi-Bernoulli (LMB) filter to perform online multitarget state estimation and track maintenance efficiently. On the basis of the original LMB filer, we propose a target posterior approximation technique to use a weighted single Gaussian component representing each individual target. Moreover, we present the Gaussian mixture implementation of the proposed efficient approximation of the LMB filter under linear, Gaussian assumptions on the target dynamic model and measurement model. Numerical results verify that our proposed efficient approximation of the LMB filer achieves accurate tracking performance and runs several times faster than the original LMB filer.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3