Fracture Analysis of Compacted Clay Soil Beams with Offset Notches Based on Three-Point Bending Test: Experimental Characterization and Numerical Simulation

Author:

Fang Liangfei12,Cao Chengmao12ORCID,Li Qing12,Qin Kuan12,Sun Xingdong12,Ge Jun12

Affiliation:

1. School of Engineering, Anhui Agricultural University, Hefei 230036, China

2. Anhui Province Engineering Laboratory of Intelligent Agricultural Machinery and Equipment, Hefei 230036, China

Abstract

The design and performance of tillage components such as subsoiler are generally characterized by the fracture features of soil mass in agricultural engineering, thus making the improvements of those tillage tools challenging due to the fact that the soil fracture mechanisms cannot be accurately explored and implemented. To alleviate this issue, in this paper, a physical three-point bending (TPB) test is conducted for investigating the fractural and fragmental characteristics of the compacted clay beams (CCB) with offset notches under the framework of mixed-mode I + II fracture, and the crack initiation as well as its propagation of the CCB is observed and fractural mechanisms of the CCB are discussed. Meanwhile, numerical simulation is also conducted utilizing two finite element methods, i.e., the extended finite element method (XFEM) and the combined finite-discrete element method (FDEM), for the CCB under three typical scenarios with notch offset ratios C = 0, C = 0.375, and C = 0.625, respectively. The authenticity and availability of both experimental test and numerical simulation are validated correspondingly. Results indicate the following: (1) The average peak load, the distance between the terminal crack point and the center line of the CCB, and the average displacement will be increased with increases of the offset ratio, while initial crack angle will be decreased with increases of the offset ratio. (2) The initial crack will be extended from the bottom center of the CCB rather than the offset notch when the offset ratio is higher than 0.717. (3) The crack propagation and its mechanical properties (e.g., load-displacement curves) predicted by numerical simulation match well with those obtained from the physical test.

Funder

University Natural Science Research Project of Anhui Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3