Fault Diagnosis of High-Power Tractor Engine Based on Competitive Multiswarm Cooperative Particle Swarm Optimizer Algorithm

Author:

Xiao Maohua1ORCID,Wang Weichen1,Wang Kaixin1,Zhang Wei1,Zhang Hengtong1

Affiliation:

1. College of Engineering, Nanjing Agriculture University, Nanjing 210031, China

Abstract

With the rapid development of high-power tractor, the fault diagnosis of high-power tractor has become more and more important for ensuring the operating safety and efficiency. PSO is an iterative optimization evolutionary algorithm, which can iterate through different particles to find the optimal solution. However, there is only one population in the standard PSO algorithm, and the information exchange between the populations is relatively single, which can easily lead to the stagnation of the development of the population. In this paper, due to high-power tractor diesel engine fault complexity, fault correlation, and multifault concurrency, a multigroup coevolution particle swarm optimization BP neural network for diesel engine fault diagnosis method was proposed. First, the USB-CAN device was used to collect data of 8 items of the diesel engine under five different working conditions, and the data was parsed through the SAE J1939 protocol; then, the BP neural network was reconstructed, and a competitive multiswarm cooperative particle swarm optimizer algorithm (COM-MCPSO) was used to optimize its structure and weights. Finally, the data of optimized neural network under five different fault conditions show that, compared with BP neural network and PSO optimized BP neural network, the fault diagnosis of COM-MCPSO optimized BP neural network not only improves the network training speed, but also enhances generalization ability and improves recognition accuracy.

Funder

Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3