Enabling Clustering for Privacy-Aware Data Dissemination Based on Medical Healthcare-IoTs (MH-IoTs) for Wireless Body Area Network

Author:

Ullah Fasee1,Ullah Izhar2,Khan Atif3ORCID,Uddin M. Irfan4ORCID,Alyami Hashem5,Alosaimi Wael6

Affiliation:

1. Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China

2. Institute of Business and Management Sciences, Peshawar, KP, Pakistan

3. Department of Computer Science, Islamia College, Peshawar, KP, Pakistan

4. Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan

5. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

6. Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

There is a need to develop an effective data preservation scheme with minimal information loss when the patient’s data are shared in public interest for different research activities. Prior studies have devised different approaches for data preservation in healthcare domains; however, there is still room for improvement in the design of an elegant data preservation approach. With that motivation behind, this study has proposed a medical healthcare-IoTs-based infrastructure with restricted access. The infrastructure comprises two algorithms. The first algorithm protects the sensitivity information of a patient with quantifying minimum information loss during the anonymization process. The algorithm has also designed the access polices comprising the public access, doctor access, and the nurse access, to access the sensitivity information of a patient based on the clustering concept. The second suggested algorithm is K-anonymity privacy preservation based on local coding, which is based on cell suppression. This algorithm utilizes a mapping method to classify the data into different regions in such a manner that the data of the same group are placed in the same region. The benefit of using local coding is to restrict third-party users, such as doctors and nurses, when trying to insert incorrect values in order to access real patient data. Efficiency of the proposed algorithm is evaluated against the state-of-the-art algorithm by performing extensive simulations. Simulation results demonstrate benefits of the proposed algorithms in terms of efficient cluster formation in minimum time, minimum information loss, and execution time for data dissemination.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3