Affiliation:
1. School of Computer and Communication Engineering, University of Science and Technology, Beijing 100083, China
2. Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
Abstract
Dynamic scene stitching still has a great challenge in maintaining the global key information without missing or deforming if multiple motion interferences exist in the image acquisition system. Object clips, motion blurs, or other synthetic defects easily occur in the final stitching image. In our research work, we proceed from human visual cognitive mechanism and construct a hybrid-saliency-based cognitive model to automatically guide the video volume stitching. The model consists of three elements of different visual stimuli, that is, intensity, edge contour, and scene depth saliencies. Combined with the manifold-based mosaicing framework, dynamic scene stitching is formulated as a cut path optimization problem in a constructed space-time graph. The cutting energy function for column width selections is defined according to the proposed visual cognition model. The optimum cut path can minimize the cognitive saliency difference throughout the whole video volume. The experimental results show that it can effectively avoid synthetic defects caused by different motion interferences and summarize the key contents of the scene without loss. The proposed method gives full play to the role of human visual cognitive mechanism for the stitching. It is of high practical value to environmental surveillance and other applications.
Funder
China Postdoctoral Science Foundation
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献