Affiliation:
1. Collage of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, China
Abstract
This paper describes a case of using a pile-slab composite foundation to handle a bridge-end bump problem. Conventionally, a deep-seated concrete slab method is employed to tackle this problem; however, this method generates a large stress concentration within 1 m from the bridge end. The mechanical bearing capacity of the deep-seated concrete slab is insufficient and prone to structural damage. Further, the longitudinal slope change rate is also very high. To overcome these limitations and solve the problem, a lower partition slab-pile foundation treatment method is proposed. The construction of the proposed method is provided, and the results of a case study analyzed by field monitoring and a simulation executed using ABAQUS finite element simulation show good agreement. The results indicate that the mechanical bearing characteristics for the proposed lower partition slab-pile foundation treatment method are better than the conventional deep-seated concrete slab method, and therefore, the structure is more resistant to damage. In addition, because the pile foundation enhances the foundation bearing capacity, the longitudinal slope change rate of the new pile-slab composite foundation is 2.5 times that for the deep-seated concrete slab technology. Thus, the lower partition slab-pile foundation treatment method can better deal with the bridge end bump problem.
Funder
National Natural Science Foundation of China
Subject
Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献