Magnetite-Functionalized Horse Dung Humic Acid (HDHA) for the Uptake of Toxic Lead(II) from Artificial Wastewater

Author:

Basuki Rahmat1,Rusdiarso Bambang1ORCID,Santosa Sri Juari1,Siswanta Dwi1

Affiliation:

1. Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Abstract

Magnetite-functionalized horse dung humic acid (HDHA) has been successfully prepared by the coprecipitation method, and the as-prepared adsorbent (MHDHA) has been applied as an easy-handling adsorbent for toxic Pb(II) in artificial wastewater. The MHDHA was characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), and vibrating sample magnetometer (VSM). The FT-IR study showed that the MHDHA had the characteristics peaks of HA and Fe-O stretching. The XRD analysis revealed that the MHDHA had the 2 θ characteristic for magnetite. The TEM image and EDX analysis exhibited that the MHDHA with an average size of ∼14 nm was partially aggregated and contained ( w / w ) 9.89% carbon, 2.89% nitrogen, and 32.74% oxygen based on functional groups of HDHA. The stability improvement of MHDHA was showed by decreasing HDHA dissolved from 95% to less than 30% at pH 12 after magnetite functionalization. The post-adsorption handling improvement was evidenced by easy and quick retraction by an external magnet with a 62.95 emu/g magnetic strength value. The adsorption capacities were influenced by the pH and ionic strength, whilst the adsorption rates were well simulated by the Ho pseudo-second-order model. The removal uptake of Pb(II) ions increased when the initial concentration was increased and fitted well with the Langmuir isotherm model when the monolayer adsorption capacity was 2.78 × 10 4 mol / g (equal to 57.64 mg/g). The value of Dubinin-Radushkevich adsorption energy ( E D R ) found in this study was 14.78 kJ/mol, which implied that ion exchange is the main mechanism involved in the adsorption process. The regeneration studies of MHDHA show that there was no significant change in composition, morphology, crystallinity, and functional group after five consecutive cycles of the adsorption-desorption process.

Funder

Universitas Gadjah Mada

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3