Path Planning and Control of a Quadrotor UAV Based on an Improved APF Using Parallel Search

Author:

Huang Tianpeng1,Huang Deqing1ORCID,Qin Na1,Li Yanan2

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China

2. Department of Engineering and Design, University of Sussex, Brighton BN1 9RH, UK

Abstract

Control and path planning are two essential and challenging issues in quadrotor unmanned aerial vehicle (UAV). In this paper, an approach for moving around the nearest obstacle is integrated into an artificial potential field (APF) to avoid the trap of local minimum of APF. The advantage of this approach is that it can help the UAV successfully escape from the local minimum without collision with any obstacles. Moreover, the UAV may encounter the problem of unreachable target when there are too many obstacles near its target. To address the problem, a parallel search algorithm is proposed, which requires UAV to simultaneously detect obstacles between current point and target point when it moves around the nearest obstacle to approach the target. Then, to achieve tracking of the planned path, the desired attitude states are calculated. Considering the external disturbance acting on the quadrotor, a nonlinear disturbance observer (NDO) is developed to guarantee observation error to exponentially converge to zero. Furthermore, a backstepping controller synthesized with the NDO is designed to eliminate tracking errors of attitude. Finally, comparative simulations are carried out to illustrate the effectiveness of the proposed path planning algorithm and controller.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3