Stability Assessment of Ground Surface along Tunnels in Karst Terrain Using Improved Fuzzy Comprehensive Evaluation

Author:

Zhang Kai1ORCID,Zhou Zelin23ORCID,Chen Shougen3ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

2. China 19th Metallurgical Corporation, Chengdu, Sichuan 610031, China

3. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

Abstract

The stability of ground surface along tunnels in karst terrain is influenced by complex factors, among which the karst features are the significant ones. Under the influence of karst, the ground surface along tunnels is very easy to collapse, thus causing great casualties and economic losses. To provide guidance for maintaining the stability of ground surface along tunnels, an analysis system is proposed for assessing the stability of ground surface along tunnels in karst terrain based on an improved fuzzy comprehensive evaluation. Based on the case analysis of ground collapse along tunnels in karst terrain and the review of the related researches, the evaluation index system for ground surface stability assessment was established. The ridge-shaped membership functions were constructed to calculate the membership degree for the evaluation indices. The comprehensive weighting method combining the Fuzzy Analytical Hierarchy Process and correlation analysis was applied to determine weights for evaluation indices. And the ground surface stability level was recognized based on the maximum membership principle. The proposed assessment system was applied to assess the ground surface stability along the tunnels of Guiyang Metro Line 1, and the assessment results agreed well with the regional ground collapse history, verifying the effectiveness and reliability of the assessment system. Combining with the assessment results, a series of measures were conducted to promote the ground surface stability before tunnel excavation. This system provides a valuable tool for assessing and guiding to improve stability of the ground surface along tunnels in karst terrain.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3