Occurrence of Pharmaceutical Residues and Antibiotic-Resistant Bacteria in Water and Sediments from Major Reservoirs (Owabi and Barekese Dams) in Ghana

Author:

Gyesi Joseph Nana1,Nyaaba Bismark Anabila1,Darko Godfred1,Mills-Robertson Felix Charles2,Miezah Kodwo3,Acheampong Nana Aboagye4,Frimpong Felicia1,Gyimah Grace1,Quansah Bridget1,Borquaye Lawrence Sheringham15ORCID

Affiliation:

1. Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

2. Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

3. Department of Environmental Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

4. Department of Microbiology, University for Development Studies, Nyankpala, Ghana

5. Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

The presence of pharmaceuticals in the environment is undesirable since their biological activity may impair ecosystem health of reservoirs that receive inflows from other water sources. This work determined the concentrations of analgesics and antibiotics, and the occurrence of antimicrobial resistance among microbes in water and sediment samples from Owabi and Barekese reservoirs—two main sources of pipe-borne water in the Kumasi metropolis in Ghana. The study also assessed the knowledge, attitude, and practice of inhabitants near these reservoirs regarding the disposal of unused and expired medicines. Out of nine targeted pharmaceuticals, four were detected in at least one sample. Five analytes (caffeine, ciprofloxacin, doxycycline, ibuprofen, and metronidazole) were below detection limit for all samples. The levels of pharmaceuticals were low, as expected, ranging from 0.06 to 36.51 μg/L in the water samples and 3.34–4.80 μg/kg in sediments. The highest detected concentration of any pharmaceutical in water was for diclofenac (107.87 μg/L), followed by metronidazole (22.23 μg/L), amoxicillin (1.86 μg/L), chloramphenicol (0.85 μg/L), and paracetamol (0.16 μg/L). Chloramphenicol recorded the highest concentration (10.22 μg/kg) in the sediments. Five bacteria isolates (Enterobacter, Clostridium, Pseudomonas, Acinetobacter, and Klebsiella) from the samples were resistant to all the antibiotics tested. Isolates of Corynebacterium and Listeria showed susceptibility to only doxycycline. Isolates of Bacillus were susceptible to only two antibiotics (erythromycin and doxycycline). All the 100 respondents interviewed admitted that they dispose of medications once they do not need them. Of those who disposed of unwanted medicines, 79% did so inappropriately. Disposal in household trash (67%) was the most common method used. Majority of respondents felt the need for a facility or program to collect unused medicines (77%), hence their willingness to pay to reduce pollution by pharmaceuticals in the environment. It is quite clear from the ecotoxicological risk assessment that a single pharmaceutical at very low level as those in this study and other works is likely to pose many ecological risks upon long-term exposure and therefore cannot be ignored.

Funder

KNUST Research Fund

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3