Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network

Author:

Huang Jianling1ORCID,Zeng Xiaoye1ORCID,Ding Lu2,Yin Yang1,Li Yange1ORCID

Affiliation:

1. Department of Engineering Management, School of Civil Engineering, Central South University, Changsha, Hunan 410083, China

2. Pricing Certificate Centre, Changde Municipal Development and Reform Commission, Changde, Hunan 415000, China

Abstract

Landslides are one of the most widespread natural hazards that cause damage to both property and life every year. Therefore, the landslide susceptibility evaluation is necessary for land hazard assessment and mitigation of landslide-related losses. Selecting an appropriate mapping unit is an essential step for landslide susceptibility evaluation. This study tested the back propagation (BP) neural network technique to develop a landslide susceptibility map in Qingchuan County, Sichuan Province, China. It compared the results of applying six different slope unit scales for landslide susceptibility maps obtained using hydrological analysis. We prepared a dataset comprising 973 historical landslide locations and six conditioning factors (elevation, slope degree, aspect, lithology, distance to fault lines, and distance to drainage network) to construct a geospatial database and divided the data into the training and testing datasets. We based on the BP learning algorithm to generate landslide susceptibility maps using the training dataset. We divided Qingchuan County into six different scales of slope unit: 4,401, 13,146, 39,251, 46,504, 56,570, and 69,013, then calculated the receiver operating characteristic (ROC) curve, and used the area under the curve (AUC) for the quantitative evaluation of 6 different slope unit scales of landslide susceptibility maps using the testing dataset. The verification results indicated that the evaluation generated by 56,570 slope units had the highest accuracy with a ROC curve of 0.9424. Overelaborate and rough division of slope units may not get the best evaluation results, and it is necessary to obtain the slope units most consistent with the actual situation through debugging. The results of this study will be useful for the development of landslide hazard mitigation strategies.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3