A Crowdsensing-Based Real-Time System for Finger Interactions in Intelligent Transport System

Author:

Song Chengqun12ORCID,Cheng Jun12ORCID,Feng Wei12

Affiliation:

1. Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

2. The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

Crowdsensing leverages human intelligence/experience from the general public and social interactions to create participatory sensor networks, where context-aware and semantically complex information is gathered, processed, and shared to collaboratively solve specific problems. This paper proposes a real-time projector-camera finger system based on the crowdsensing, in which user can interact with a computer by bare hand touching on arbitrary surfaces. The interaction process of the system can be completely carried out automatically, and it can be used as an intelligent device in intelligent transport system where the driver can watch and interact with the display information while driving, without causing visual distractions. A single camera is used in the system to recover 3D information of fingertip for hand touch detection. A linear-scanning method is used in the system to determine the touch for increasing the users’ collaboration and operationality. Experiments are performed to show the feasibility of the proposed system. The system is robust to different lighting conditions. The average percentage of correct hand touch detection of the system is 92.0% and the average time of processing one video frame is 30 milliseconds.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Dissipative Losses in Modular Reconfigurable Energy Storage Systems Using SystemC TLM and SystemC-AMS;ACM Transactions on Design Automation of Electronic Systems;2019-07-31

2. Designing Incentive Mechanisms for Mobile Crowdsensing with Intermediaries;Wireless Communications and Mobile Computing;2019-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3