Maximizing the Accuracy of Continuous Quantification Measures Using Discrete PackTest Products with Deep Learning and Pseudocolor Imaging

Author:

Doi Ryoichi1ORCID

Affiliation:

1. Faculty of Social-Human Environmentology, Daito Bunka University, 1-9-1 Takashimadaira, Itabashi-ku, Tokyo 175-8571, Japan

Abstract

Using the standard colors provided in the instructions, PackTest products can approximate and quickly estimate the chemical characteristics of liquid samples. The combination of PackTest products and deep learning was examined for its accuracy and precision in quantifying chemical oxygen demand, ammonium ion, and phosphate ion using a pseudocolor imaging method. Each PackTest product underwent reactions with standard solutions. The generated color was scanner-read. From the color image, ten grayscale images representing the intensity values of red, green, blue, cyan, magenta, yellow, key black, and L, and the values of a and b were generated. Using the grayscale images representing the red, green, and blue intensity values, 73 other grayscale images were generated. The grayscale intensity values were used to prepare datasets for the ten and 83 (=10 + 73) images. For both datasets, chemical oxygen demand quantification was successful, resulting in values of normalized mean absolute error of less than 0.4% and coefficients of determination that were greater than 0.9996. However, the quantification of ammonium and phosphate ions commonly provided false positive results for the standard solution that contained no ammonium ion/phosphate ion. For ammonium ion, multiple regression markedly improved the accuracy using the pseudocolor method. Phosphate ion quantification was also improved by avoiding the use of an estimated value for the reference solution that contained no phosphate ion. Real details of the measurements and the perspectives were discussed.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3