Dynamical Analysis and Periodic Solution of a Chaotic System with Coexisting Attractors

Author:

Chen Mingshu1ORCID,Wang Zhen1ORCID,Zhang Xiaojuan1ORCID,Tian Huaigu1

Affiliation:

1. Shaanxi International Joint Research Center for Applied Technology of Controllable Neutron Source School of Science, Xijing University, Xi’an 710123, China

Abstract

Chaotic attractors with no equilibria, with an unstable node, and with stable node-focus are presented in this paper. The conservative solutions are investigated by the semianalytical and seminumerical method. Furthermore, multiple coexisting attractors are investigated, and circuit is carried out. To study the system’s global structure, dynamics at infinity for this new chaotic system are studied using Poincaré compactification of polynomial vector fields in R 3 . Meanwhile, the dynamics near the infinity of the singularities are obtained by reducing the system’s dimensions on a Poincaré ball. The averaging theory analyzes the periodic solution’s stability or instability that bifurcates from Hopf-zero bifurcation.

Funder

Natural Science Basic Research Program of Shaanxi

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference50 articles.

1. Deterministic Nonperiodic Flow

2. Yet another chaotic attractor;T. Ueta;International Journal of Bifurcation and Chaos,1999

3. A NEW CHAOTIC ATTRACTOR COINED

4. A CHAOTIC SYSTEM WITH ONE SADDLE AND TWO STABLE NODE-FOCI

5. Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity;Z. Wang;Neurocomputing,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3