Volleyball Data Analysis System and Method Based on Machine Learning

Author:

Dai Xianyan1,Li Shangbin2ORCID

Affiliation:

1. School of Physical Education, Harbin University, Harbin 150086, China

2. Physical Education Department, Harbin Engineering University, Harbin 150001, China

Abstract

After the reform and the opening up, the economy of my country has grown rapidly and people’s lives have become better and better. As a result, there is a lot of time to pay attention to their health, which has promoted the rapid development of my country’s sports industry. Since the 2008 Beijing Olympics, the successful hosting of the Beijing Olympics has been further strengthened. With the rise of the development of sports in our country, the use of machine learning in a large amount of information can process this data and analyze it well. Based on this, this article is aimed at making volleyball players and coaches better understand the technical structure of hiking and the technique of hiking. The paper understands the characteristics of muscle activity over time and uses machine learning methods to analyze a large number of volleyball sports data. In this experiment, 12 volleyball players from a college of physical education were selected. According to the actual situation of the students’ physical fitness and skills, it is more reasonable to divide them into two arms with preswing technology (A type) group and two-arms without preswing technology (B type) group. Mainly study the volleyball spiking action, select the representative front-row 4th position strong attack and the back-row 6th position for comparison and analysis, and analyze the process from the take-off stage to the aerial shot stage in the four stages of the smash through the kinematics, dynamics, and surface electromyography parameters. Experiments have shown that for type A, the left gluteus maximus integral EMG sum value is significantly different between the front and rear rows ( P < 0.05 ). The discharge volume of the left gluteus maximus during the front-row spiking process is greater than that of the back-row spiking. This difference is mainly reflected in the kicking stage and the air attack stage. It shows that volleyball data analysis has a very broad prospect of exploration and application, which can create huge social and economic benefits. How to analyze kinematics is also a very demanding research project and is also part of the future analysis of sports data. Academic value and broad practical significance are important.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3