Author:
Wang Peng,Li Jixiang,Zhang Yuan
Abstract
The problem of walking simulation for the quadruped search robot on a slope is described as an uncertainty system. In order to create the virtual ramp road environment, VRML modeling language is used to build a real environment, which is a 3D terrain scene in Matlab platform. According to the VRML model structure of the quadruped search robot, a guaranteed cost nonfragile robust controller is designed for ramp road walking simulation. The constraint inequation is transformed into a strict linear inequality by using two equalities; the controller and the guaranteed cost upper bound are given based on the solutions of the linear matrix inequality. And the approaches of designing the controller are given in terms of linear matrix inequalities. The walking stability of quadruped search robot is observed using the VRML model established with the change of gravity curve. Simulation results show that the gravity displacement curve of the robot is smooth. The results given by linear matrix inequalities indicate that the proposed guaranteed cost controller is correct and effective.
Funder
National Natural Science Foundation of China
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献