A Study on the Fractal-Fractional Epidemic Probability-Based Model of SARS-CoV-2 Virus along with the Taylor Operational Matrix Method for Its Caputo Version

Author:

Rezapour Shahram12ORCID,Etemad Sina1ORCID,Avcı İbrahim3ORCID,Ahmad Hijaz4ORCID,Hussain Azhar5ORCID

Affiliation:

1. Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

3. Department of Computer Engineering, Faculty of Engineering, Final International University, Kyrenia, Northern Cyprus Mersin 10, Turkey

4. Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 00186 Rome, Italy

5. Department of Mathematics, University of Chakwal, Chakwal 48800, Pakistan

Abstract

SARS-CoV-2 is a strain of the large coronavirus family that has led to COVID-19 disease. The virus has been one of the deadliest known viruses in the world to date. Rapid mutations and the creation of new strains cause researchers to focus on the dynamic behaviors of the virus and to analyze it accurately through clinical research and mathematical models. In this paper, from the point of view of mathematical modeling, we intend to focus on the dynamic behavior of the system and examine its analytical and numerical aspects in two different structures. In other words, by recalling newly formulated hybrid fractional-fractal operators, we present a fractal-fractional probability-based model of SARS-CoV-2 virus for the first time and extract its equivalent compact fractal-fractional IVP to investigate its existence and stability criteria. A type of special admissible contractions will help us in this regard. Moreover, based on the source data, we simulate our system according to algorithms derived by Adams-Bashforth method and explain the effects of variation of the dimension of fractal and fractional order on dynamics of solutions. Finally, we transform our fractal-fractional model into a Caputo probability-based model of SARS-CoV-2 to derive solutions via the operational matrix method under Taylor’s basis. The numerical simulations show close behaviors for both of models.

Funder

Azarbaijan Shahid Madani University

Publisher

Hindawi Limited

Subject

Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3